abstract
The separation of CO2/CH4 gas mixtures on mesoporous SBA-15 functionalized with primary, secondary and tertiary amines, and a diamine (primary and secondary), was studied by gas adsorption, solid state nuclear magnetic resonance (ssNMR) and electronic structure density functional theory (DFT) techniques to evaluate the possible application of amine functionalized mesoporous silicas in the purification of natural or biogas sources. High pressure adsorption, up to 10 bar, showed a strong selective interaction of CO2 with primary amine, secondary amine and diamine that give separation selectivities up to 25, 3300 and 15000, respectively, due to the chemisorption of CO2. Notably, not all amines are saturated at pressures below 40 kPa, as demonstrated by the C-13 ssNMR spectra with variable (CO2)-C-13 pressure. Furthermore, ssNMR and DFT results indicated that physisorbed CO2 interacts with the formed chemisorbed species, providing a possible explanation for the high selectivity observed even beyond the saturation of amines. Reaction Gibbs energies of CO2 with the amines estimated by DFT computational methods are in excellent agreement with observed differences in the experimental Henry's constants, selectivities and phase diagrams. Preliminary assessment of the materials for possible application on cyclic separation by pressure modulation indicated that although secondary amine and diamine originate very high selectivities, they are not very suitable for applications because of the lower working capacities (below 1.3 mmol g(-1)). The material functionalized with primary amine presents a better compromise between the high selectivity for separation and a good working capacity (about 2 mmol g(-1)).
keywords
CARBON-DIOXIDE; MESOPOROUS SILICA; LANDFILL GAS; SELECTIVE ADSORPTION; MIXTURE ADSORPTION; BINARY-MIXTURE; CO2 ADSORPTION; METHANE; NITROGEN; SBA-15
subject category
Engineering
authors
Mafra, L; Cendak, T; Schneider, S; Wiper, PV; Pires, J; Gomes, JRB; Pinto, ML
our authors
acknowledgements
The work was financed by Fundacao para a Ciencia e a Tecnologia (FCT) through projects IF/00993/2012/CP0172/CT0013 and PTDC/QEQ-QAN/6373/2014. This work was developed in the scope of the Projects POCI-01-0145-FEDER-007679 vertical bar UID/CTM/50011/2013 (CICECO), UID/MULTI/00612/2013 (CQB), UID/ECI/04028/2013 (CERENA), financed by national funds through the FCT/MEC and co-financed by FEDER under the PT2020 Partnership Agreement. The authors are also grateful to Investigador FCT program and to the Portuguese NMR Network (RNRMN).