Paramagnetic spherical nanoparticles by the self- assembly of persistent trityl radicals


Spherical nanoparticles and fibres observable by cryo-electron microscopy are spontaneously formed by the Finland trityl radical at concentrations above 15 mM. These species represent a new class of paramagnetic, metal-free, nanoscale supramolecular materials. Self-association was observed under a variety of experimental conditions, including aqueous solution at room temperature, low temperature frozen glasses and the gas phase. Oligomers formed by at least 5 Finland radicals were detected by ion-mobility mass spectrometry. Magnetic susceptibility data as well as low temperature EPR spectra show coupling between electronic spins in the self-assembled species. Quantum chemical calculations show stacking along the C3 symmetry axis. Nanoparticle formation requires additional lateral packing that can be provided by hydrogen bonding involving the triangular array of carboxylic acid groups leading to the assembly of geodesic spheres.


I. Marin-Montesinos, J. C. Paniagua, Alejandro Peman, M. Vilaseca, F. Luis, S. Van Doorslaer and M. Pons

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".