authors |
Hedayati, M; Taheri-Nassaj, E; Yourdkhani, A; Borlaf, M; Rasekh, S; Amirkhizi, P; Sebastian, T; Payandeh, S; Clemens, FJ |
nationality |
International |
journal |
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY |
author keywords |
Barium titanate; Nanofibers; Electrospinning; Dielectric; Yamada model; Maxwell Garnett model |
keywords |
BARIUM-TITANATE NANOFIBERS; FERROELECTRIC PROPERTIES; FINE PARTICLES; POLYMER MATRIX; PERMITTIVITY; SIZE; COMPOSITES; PROPERTY; BEHAVIOR; DENSITY |
abstract |
The main aim of this work was to estimate the dielectric constant of electrospun BaTiO3 nanofibers (BT NFs) using theoretical models. The effect of calcination temperatures on morphology and crystal structure of BT NFs was also investigated by using SEM, TEM, XRD and Raman spectroscopy. The dielectric constant of BT NFs was calculated by applying modified Maxwell Garnett and Yamada models on polymer nanocomposite films comprising stearic acid modified BT NFs in Polyvinylidene difluoride (PVDF) matrix. The results showed that although it was detected low tetragonality (1.0041) at lowest calcination temperature (850 degrees C), the better crystallization of BT and high tetragonality could be achieved at a calcination temperature of 1000 degrees C and above. Based on both theoretical models, the dielectric constant of BT NFs calcined at 850 degrees C (around 830) is lower than those calcined at 1000 degrees C (about 1300), which is the result of different tetragonality and grain size. |
publisher |
ELSEVIER SCI LTD |
issn |
0955-2219 |
isbn |
1873-619X |
year published |
2021 |
volume |
41 |
issue |
2 |
beginning page |
1299 |
ending page |
1309 |
digital object identifier (doi) |
10.1016/j.jeurceramsoc.2020.09.072 |
web of science category |
11 |
subject category |
Materials Science, Ceramics |
unique article identifier |
WOS:000599861300001
|