abstract
Chemical analyses in the field using surface-enhanced Raman scattering (SERS) protocols are expected to be part of several analytical procedures applied to water quality monitoring. To date, these endeavors have been supported by developments in SERS substrate nanofabrication, instrumentation portability, and the internet of things. Here, we report distinct chemical strategies for preparing magneto-plasmonic (Fe3O4 : Au) colloids, which are relevant in the context of trace-level detection of water contaminants due to their inherent multifunctionality. The main objective of this research is to investigate the role of poly(amidoamine) dendrimers (PAMAMs) in the preparation of SERS substrates integrating both functionalities into single nanostructures. Three chemical routes were investigated to design magneto-plasmonic nanostructures that translate into different ways for assessing SERS detection by using distinct interfaces. Hence, a series of magneto-plasmonic colloids have been characterized and then assessed for their SERS activity by using a model pesticide (thiram) dissolved in aqueous samples.
keywords
IRON-OXIDE NANOPARTICLES; BIOMEDICAL APPLICATIONS; PAMAM DENDRIMERS; FUNCTIONALIZATION; RESONANCE; NANOCOMPOSITE; MICROSPHERES; FLUORESCENCE; FABRICATION; PARTICLES
subject category
Chemistry
authors
Fernandes, T; Nogueira, HIS; Amorim, CO; Amaral, JS; Daniel-da-Silva, AL; Trindade, T
our authors
Groups
G1 - Porous Materials and Nanosystems
G2 - Photonic, Electronic and Magnetic Materials
G6 - Virtual Materials and Artificial Intelligence
Projects
CICECO - Aveiro Institute of Materials (UIDB/50011/2020)
CICECO - Aveiro Institute of Materials (UIDP/50011/2020)
Associated Laboratory CICECO-Aveiro Institute of Materials (LA/P/0006/2020)
acknowledgements
T.F. thanks the FundacAo para a Ciencia e Tecnologia (FCT) for PhD grant SFRH/BD/130934/2017. A.L.D.-d.-S. acknowledges FCT for a research contract under the Program Investigador FCT 2014. This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 and LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC).