REMOVAL OF MERCURY FROM AQUEOUS SOLUTIONS BY ETS-4 MICROPOROUS TITANOSILICATE: EFFECT OF CONTACT TIME, TITANOSILICATE MASS AND INITIAL METAL CONCENTRATION

abstract

Mercury is one of the most toxic heavy metals present in the environment and therefore is extremely important develop new, simple and reliable techniques for its removal from aqueous solutions. A recent line of research within this context is the application of microporous materials. The use of these materials for removing heavy metals from solutions may become a potential clean-up technology in the field of wastewater treatment. In this work it is reported the application of microporous titanosilicate ETS-4 as ion exchanger to remove Hg(2+) from aqueous solution. Under batch conditions, we studied the effect of contact time, titanosilicate mass and initial Hg(2+) concentration. Only 5 mg of ETS-4 are required to purify 2 litres of water with 50 mu g L(-1) of metal. Under the experimental conditions, the initial Hg(2+) concentration and ETS-4 mass have strong influence on the sorption process, and it is proved that 24 h are almost always sufficient to attain ion exchange equilibrium. Langmuir and Freundlich isotherms were used to fit equilibrium experimental results. The kinetics of mercury removal was reliably described by a pseudo second-order model. On the whole, ETS-4 shows considerable potential to remove Hg(2+) from wastewaters.

keywords

ADSORPTION; EQUILIBRIUM; SORPTION; IONS

subject category

Engineering; Nuclear Science & Technology

authors

Lopes, CB; Otero, M; Lin, Z; Pereira, E; Silva, CM; Rocha, J; Duarte, AC

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".