Exploring Charged Defects in Ferroelectrics by the Switching Spectroscopy Piezoresponse Force Microscopy

resumo

Monitoring the charged defect concentration at the nanoscale is of critical importance for both the fundamental science and applications of ferroelectrics. However, up-to-date, high-resolution study methods for the investigation of structural defects, such as transmission electron microscopy, X-ray tomography, etc., are expensive and demand complicated sample preparation. With an example of the lanthanum-doped bismuth ferrite ceramics, a novel method is proposed based on the switching spectroscopy piezoresponse force microscopy (SSPFM) that allows probing the electric potential from buried subsurface charged defects in the ferroelectric materials with a nanometer-scale spatial resolution. When compared with the composition-sensitive methods, such as neutron diffraction, X-ray photoelectron spectroscopy, and local time-of-flight secondary ion mass spectrometry, the SSPFM sensitivity to the variation of the electric potential from the charged defects is shown to be equivalent to less than 0.3 at% of the defect concentration. Additionally, the possibility to locally evaluate dynamics of the polarization screening caused by the charged defects is demonstrated, which is of significant interest for further understanding defect-mediated processes in ferroelectrics.

palavras-chave

ELECTRICAL-CONDUCTIVITY; BIFEO3 CERAMICS; DOMAIN; PHASE; POLARIZATION; TRANSITIONS; PRINCIPLE; CRYSTALS; STRAIN

categoria

Chemistry; Science & Technology - Other Topics; Materials Science

autores

Alikin, D; Abramov, A; Turygin, A; Ievlev, A; Pryakhina, V; Karpinsky, D; Hu, QY; Jin, L; Shur, V; Tselev, A; Kholkin, A

nossos autores

agradecimentos

The reported study was funded by the Russian Science Foundation (grant 19-72-10076). The equipment of the Ural Center for Shared Use Modern nanotechnology Ural Federal University (Reg.. 2968) was used. ToF-SIMS characterization was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility, and using instrumentation within ORNL's Materials Characterization Core provided by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. PFM and XPS data analysis were performed in part by A.Ts. and was supported by the project CICECOAveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".