Exploring Charged Defects in Ferroelectrics by the Switching Spectroscopy Piezoresponse Force Microscopy
authors Alikin, D.; Abramov, A.; Turygin, A.; Ievlev, A.; Pryakhina, V.; Karpinsky, D.; Hu, Q.; Jin, L.; Shur, V.; Tselev, A.; Kholkin
nationality International
abstract Monitoring the charged defect concentration at the nanoscale is of critical importance for both the fundamental science and applications of ferroelectrics. However, up-to-date, high-resolution study methods for the investigation of structural defects, such as transmission electron microscopy, X-ray tomography, etc., are expensive and demand complicated sample preparation. With an example of the lanthanum-doped bismuth ferrite ceramics, a novel method is proposed based on the switching spectroscopy piezoresponse force microscopy (SSPFM) that allows probing the electric potential from buried subsurface charged defects in the ferroelectric materials with a nanometer-scale spatial resolution. When compared with the composition-sensitive methods, such as neutron diffraction, X-ray photoelectron spectroscopy, and local time-of-flight secondary ion mass spectrometry, the SSPFM sensitivity to the variation of the electric potential from the charged defects is shown to be equivalent to less than 0.3 at% of the defect concentration. Additionally, the possibility to locally evaluate dynamics of the polarization screening caused by the charged defects is demonstrated, which is of significant interest for further understanding defect-mediated processes in ferroelectrics.
publisher Wiley
year published 2021
digital object identifier (doi) 10.1002/smtd.202101289
link https://onlinelibrary.wiley.com/doi/10.1002/smtd.202101289
  ciceco authors
  impact metrics
journal analysis (jcr 2019):
journal impact factor 12.13
5 year journal impact factor 12.13
category normalized journal impact factor percentile 91.375
dimensions (citation analysis):
altmetrics (social interaction):