resumo
A new approach for epitaxial stabilisation of ferroelectric orthorhombic (o-) ZrO2 films with negative piezoelectric coefficient in - 8nm thick films grown by ion-beam sputtering is demonstrated. Films on (011)-Nb: SrTiO3 gave the oriented o-phase, as confirmed by transmission electron microscopy and electron backscatter diffraction mapping, grazing incidence x-ray diffraction and Raman spectroscopy. Scanning probe microscopy techniques and macroscopic polarization-electric field hysteresis loops show ferroelectric behavior, with saturation polarization of -14.3 mu C/cm2, remnant polarization of -9.3 mu C/cm2 and coercive field -1.2 MV/cm. In contrast to the o-films grown on (011)-Nb:SrTiO3, films grown on (001)-Nb:SrTiO3 showed mixed monoclinic (m) and o-phases causing an inferior remnant polarization of -4.8 mu C/cm2, over 50% lower than the one observed for the film grown on (011)-Nb:SrTiO3. Density functional theory (DFT) calculations of the SrTiO3/ZrO2 interfaces support the experimental findings of a stable polar o-phase for growth on (011) Nb:SrTiO3, and they also explain the negative piezoelectric coefficient.
palavras-chave
ENERGY-STORAGE; POLARIZATION; PERFORMANCE
categoria
Materials Science
autores
Sliva, JPB; Istrate, MC; Hellenbrand, M; Jan, AT; Becker, MT; Symonowicz, J; Figueiras, FG; Lenzi, V; Hill, MO; Ghica, C; Romanyuk, KN; Gomes, MJM; Di Martino, G; Marques, L; MacManus-Driscoll, JL
nossos autores
Grupos
G2 - Materiais Fotónicos, Eletrónicos e Magnéticos
G6 - Materiais Virtuais e Inteligência Artificial
agradecimentos
This work was supported by: (i) the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding Contract UIDB/04650/2020 and (ii) Project NECL - NORTE-01-0145- FEDER-022096 and Project UID/NAN/50024/2019. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958174 (M-ERA- NET3/0003/2021 - NanOx4EStor). This work was also developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/ 50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. It is also funded by national funds (OE), through FCT - Fundacao para a Ciencia e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. The calculations were carried out at the OBLIVION Supercomputer (based at the High Performance Computing Center - University of Evora) funded by the ENGAGE SKA Research Infrastructure (reference POCI- 01-0145-FEDER-022217 - COMPETE 2020 and the Foundation for Science and Technology, Portugal) and by the BigData@UE project (reference ALT20-03-0246-FEDER-000033 - FEDER and the Alentejo 2020 Regional Operational Program). Oblivion resources were accessed through the advanced computing projects CPCA/A2/5649/2020 and CPCA/A2/4628/2020, funded by FCT I.P. The authors gratefully acknowledge the HPC RIVR consortium (www.hpc-rivr.si) and EuroHPC JU (eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (www.izum.si) M. C. I. and C. G. acknowledge the financial support by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCDI, project number COFUND-M-ERANET-3-NanOx4Estor, within PNCDI III and POC 332/390008/29.12.2020-SMIS 109522. The authors acknowledge the CERIC-ERIC Consortium for access to experimental facilities and financial support under proposal 20192055. The authors would also like to thank Jose Santos (Thin Film Laboratory at CF-UM- UP) and Ming Xiao (Dept. of Materials Science and Metallurgy) for technical support. J.L.M.D. thanks the Royal Academy of Engineering - CIET1819_24 for support. M.H. and J.L.M.D. thank the EPSRC (EP/ T012218/1) grant for support. J.L.M.D and M.T.B. also thank EU- H2020-ERC-ADG # 882929 EROS for support. M.O.H. acknowledges support from the Herchel Smith foundation in Cambridge. G.D. acknowledges support from the Winton Programme for the Physics of Sustainability and the Isaac Newton Trust (Grant number G112877).