Thermo-physicochemical investigation of molecular interactions in binary combination (dimethyl carbonate plus methyl benzoate)

abstract

To probe the nature of interaction and its deeds with temperature in the binary combination (dimethyl carbonate + methyl benzoate), the density (rho)/speed of sound (u) be established for the total mole fraction array at T = (308.15, 313.15 and 318.15) K and at atmospheric pressure. Sign with magnitude of evaluated excess molar volume (V-m(E)) was inspected and comprehensive analysis elucidated not only pervasiveness of strong molecular interactions between molecules but also its transform with temperature. Additional, strong interactions are properly hold up by partial and excess partial molar volume ((V) over bar (m), (V) over bar (E)(m), (V) over bar (E,infinity)(m)). Additionally, relative association (R-A), Lennard-Jones repulsive power (n), excess isentropic compressibility (K-s(E)), partial and their excess partial molar isentropic compressibility ((K) over bar (m), (K) over bar (E)(m)), excess values of isobaric thermal expansion coefficient (alpha(E)(P)), isothermal compressibility (k(T)(E)), intermolecular free length (L-f(E)), acoustic impedance (Z(E)), ultrasonic speed (u(E)) were evaluated and confirmed the deductions of V-m(E). By Redlich-Kister equation, standard deviations are computed through coefficients for excess parameters. At T = 308.15 K, V-m(E) is correlated by theories of Prigogine-Flory-Patterson (PFP)/topology/Soave-Redlich-Kwong (SRK)/Peng-Robinson (PR) cubic equation of states; prophesied first-order derivatives of thermodynamic potentials; using semi-empirical equations, excess chemical potential/activity coefficients/theoretical speeds are estimated and correlated. Further, microscopic molecular properties are assessed at all temperatures by Sehgal's equations on nonlinear relations.

keywords

EQUATION-OF-STATE; LIQUID-MIXTURES; THERMODYNAMIC PROPERTIES; PHYSICAL-PROPERTIES; EXCESS PROPERTIES; 308.15 K; TOPOLOGICAL ASPECTS; REFRACTIVE-INDEXES; DIETHYLENE GLYCOL; ETHYL BENZOATE

subject category

Thermodynamics; Chemistry

authors

Jyothirmai, G; Nayeem, SM; Khan, I; Anjaneyulu, C

our authors

Groups

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".