Electric Field Induced Room Temperature Null to High Spin State Switching: A Computational Prediction


BaTiO3 is a well-known ferroelectric material, with an electric field-induced coupled electrical/structural transition from a cubic to a tetragonal lattice above room temperature. Via DFT calculations, the magnetic properties of an Fe monolayer sandwiched between bulk-like BaTiO3 are explored, showing how the magnetic moment of each Fe atom is switched from a null spin to a high spin (2 mu(B) per Fe) state when the BaTiO3 structure changes from cubic to tetragonal. This effect occurs in an optimized range of interatomic distances at the interface, allowing the design of an above-room temperature binary, electric field write/magnetic read device.




Science & Technology - Other Topics


Amorim, CO; Amaral, JS; Goncalves, JN; Amaral, VS

nossos autores


This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. FCT is also acknowledged for grants SFRH/BD/93336/2013 (C.O.A.), SFRH/BPD/82059/2011 (J.N.G.), and IF/01089/2015 (J.S.A.).

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".