resumo
The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G') and loss (G") moduli and the G' recovery capacity of the hydrogels (from 70.05 +/- 3.06 % (90:10) to 82.63 +/- 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness and stress from 114.02 +/- 10.93 Pa (90:10) to 337.16 +/- 34.03 Pa (60:40) and from 18.27 +/- 1.32 kPa (90:10) to 47.17 +/- 3.59 kPa (60:40), respectively. The hydrogels were non-cytotoxic against human keratinocyte cells (HaCaT), with cell viabilities above 70 % for up to 72 h. The hydrogel 60:40 was loaded with HaCaT cells (3 x 106 cells mL-1) and bioprinted. The cell viability was maintained elevated until day 7 (90 +/- 3 %) after bioprinting. These results highlight that the combination of these two biopolymers was a good strategy for the development of novel hydrogel-based bioinks for extrusion 3D bioprinting applications.
palavras-chave
GELLAN GUM; NANOCELLULOSE; CONSTRUCTS; ALGINATE; DESIGN; INKS; TOOL
categoria
Biochemistry & Molecular Biology; Chemistry; Polymer Science
autores
Lameirinhas, NS; Teixeira, MC; Carvalho, JPF; Valente, BFA; Pinto, RJB; Oliveira, H; Luís, JL; Pires, L; Oliveira, JM; Vilela, C; Freire, CSR
nossos autores
Grupos
G4 - Materiais Renováveis e Economia Circular
G5 - Materiais Biomiméticos, Biológicos e Vivos
Projectos
CICECO - Aveiro Institute of Materials (UIDB/50011/2020)
CICECO - Aveiro Institute of Materials (UIDP/50011/2020)
Associated Laboratory CICECO-Aveiro Institute of Materials (LA/P/0006/2020)
agradecimentos
This work was developed within the scope of the projects CICECO-Aveiro Institute of Materials (UIDB/50011/2020, UIDP/50011/2020 and LA/P/0006/2020) and CESAM (UIDP/50017/2020 and UIDB/50017/2020 and LA/P/0094/2020) , financed by national funds through the FCT/MECTES (PIDDAC) , and project NANOBIOINKS (CENTRO-01-0145-FEDER-031289) , financed by national funds through the Portuguese Foundation for Science and Technology (FCT) /MCTES. FCT is also acknowledged for the doctoral grants to N.S.L. (SFRH/BD/140229/2018) and J.P.F.C. (2020.09018.BD) and the research contracts under Scientific Employment Stimulus to C.S.R.F. (CEECIND/00464/2017) , C. V. (CEECIND/00263/2018 and 2021.01571.CEECIND) and H.O. (CEE-CIND/04050/2017) .