abstract
The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G') and loss (G") moduli and the G' recovery capacity of the hydrogels (from 70.05 +/- 3.06 % (90:10) to 82.63 +/- 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness and stress from 114.02 +/- 10.93 Pa (90:10) to 337.16 +/- 34.03 Pa (60:40) and from 18.27 +/- 1.32 kPa (90:10) to 47.17 +/- 3.59 kPa (60:40), respectively. The hydrogels were non-cytotoxic against human keratinocyte cells (HaCaT), with cell viabilities above 70 % for up to 72 h. The hydrogel 60:40 was loaded with HaCaT cells (3 x 106 cells mL-1) and bioprinted. The cell viability was maintained elevated until day 7 (90 +/- 3 %) after bioprinting. These results highlight that the combination of these two biopolymers was a good strategy for the development of novel hydrogel-based bioinks for extrusion 3D bioprinting applications.
keywords
GELLAN GUM; NANOCELLULOSE; CONSTRUCTS; ALGINATE; DESIGN; INKS; TOOL
subject category
Biochemistry & Molecular Biology; Chemistry; Polymer Science
authors
Lameirinhas, NS; Teixeira, MC; Carvalho, JPF; Valente, BFA; Pinto, RJB; Oliveira, H; Luís, JL; Pires, L; Oliveira, JM; Vilela, C; Freire, CSR
our authors
Groups
G4 - Renewable Materials and Circular Economy
G5 - Biomimetic, Biological and Living Materials
Projects
CICECO - Aveiro Institute of Materials (UIDB/50011/2020)
CICECO - Aveiro Institute of Materials (UIDP/50011/2020)
Associated Laboratory CICECO-Aveiro Institute of Materials (LA/P/0006/2020)
acknowledgements
This work was developed within the scope of the projects CICECO-Aveiro Institute of Materials (UIDB/50011/2020, UIDP/50011/2020 and LA/P/0006/2020) and CESAM (UIDP/50017/2020 and UIDB/50017/2020 and LA/P/0094/2020) , financed by national funds through the FCT/MECTES (PIDDAC) , and project NANOBIOINKS (CENTRO-01-0145-FEDER-031289) , financed by national funds through the Portuguese Foundation for Science and Technology (FCT) /MCTES. FCT is also acknowledged for the doctoral grants to N.S.L. (SFRH/BD/140229/2018) and J.P.F.C. (2020.09018.BD) and the research contracts under Scientific Employment Stimulus to C.S.R.F. (CEECIND/00464/2017) , C. V. (CEECIND/00263/2018 and 2021.01571.CEECIND) and H.O. (CEE-CIND/04050/2017) .