abstract
Cholinium-based ionic liquids ([Ch]-based ILs) were investigated as electrolytes in the formation of aqueous biphasic systems (ABS) composed of polyethylene glycol (PEG) and sodium polyacrylate (NaPA) polymers. Both enhancement and decrease in the liquid-liquid demixing ability induced by electrolytes in PEG-NaPA aqueous biphasic systems were observed. It is shown that the ILs that most extensively partition to the PEG-rich phase tend to act as inorganic salts enhancing the two-phase formation ability, while those that display a more significant partition to the NaPA-rich phase decrease the ABS formation capacity. The gathered results allowed us to confirm the tailoring ability of ILs and to identify, for the first time, opposite effects induced by electrolytes on the PEG-NaPA ABS formation ability. The distribution of the electrolyte ions between the coexisting phases and the polyelectrolyte ion compartmentalization are key factors behind the formation of PEG-NaPA-based ABS.
keywords
2-PHASE SYSTEMS; PHASE-SEPARATION; MOLECULAR-WEIGHT; PROTEIN SEPARATION; ACID) SYSTEM; POLYMER; PEG; PURIFICATION; EXTRACTION; PARTITION
subject category
Biochemistry & Molecular Biology; Chemistry, Multidisciplinary
authors
Bernardo, SC; Capela, EV; Pereira, JFB; Ventura, SPM; Freire, MG; Coutinho, JAP
our authors
Groups
G4 - Renewable Materials and Circular Economy
G5 - Biomimetic, Biological and Living Materials
acknowledgements
This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. JFB Pereira and CIEPQPF acknowledge the funding support from FCT through the projects UIDB/EQU/00102/2020 and UIDP/EQU/00102/2020.